首页> 外文OA文献 >Data analytics for energy consumption of digital manufacturing systems using Internet of Things method
【2h】

Data analytics for energy consumption of digital manufacturing systems using Internet of Things method

机译:使用物联网方法进行数字制造系统能耗数据分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The topic of ‘Industry 4.0’ has become increasingly popular in manufacturing and academia since it was first published. Under this trending topic, researchers and companies have pointed out many related capabilities required by current manufacturing systems, such as automation, interoperability, consciousness, and intelligence. To achieve these capabilities, data is considered the vitally important connecting media that integrates different manufacturing objects and activities. Additionally, sustainability is one of the most important research areas of Industry 4.0. Although modern digital manufacturing systems are becoming increasingly automated, the issue of sustainability still attracts attention, and is related to many processing factors that are present in a wide variety of systems. As a result, defining the energy consumption behaviour of digital manufacturing systems and discovering more efficient usage methods has been established as a crucial research target. In this paper, data analysis methods are proposed to facilitate better understanding and prediction of the energy consumption of digital production processes under an Internet of Things (IoT) framework. A Selective Laser Sintering (SLS) system is applied as a case study, in which a variety of real-time raw data is collected within machine logs from this ongoing Additive Manufacturing (AM) system. The machine data logs are combined with the product layout data and analysed using three data analysis techniques: linear regression, the decision tree method and the Back-propagation Neural Network method. The future work is introduced in order to complete this research.
机译:自从首次发布以来,“工业4.0”主题在制造业和学术界就越来越流行。在这个趋势主题下,研究人员和公司指出了当前制造系统所需的许多相关功能,例如自动化,互操作性,意识和智能。为了实现这些功能,数据被认为是整合不同制造对象和活动的至关重要的连接介质。此外,可持续性是工业4.0最重要的研究领域之一。尽管现代数字制造系统变得越来越自动化,但是可持续性问题仍然引起人们的注意,并且与多种系统中存在的许多处理因素有关。结果,定义数字制造系统的能耗行为并发现更有效的使用方法已被确定为重要的研究目标。在本文中,提出了数据分析方法,以促进对物联网(IoT)框架下数字生产过程的能耗的更好理解和预测。案例研究以选择性激光烧结(SLS)系统为例,该系统从正在进行的增材制造(AM)系统中的机器日志中收集各种实时原始数据。机器数据日志与产品布局数据结合在一起,并使用三种数据分析技术进行分析:线性回归,决策树方法和反向传播神经网络方法。为了完成这项研究,介绍了未来的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号